

Fire Modelling

Shahina Kurien, M.Eng **Fire Protection Program Authority (CNL)** Sam Shalabi, P.Eng, M.Eng **Fire Protection Engineer (CNL)**

December 11th /2014

Agenda:

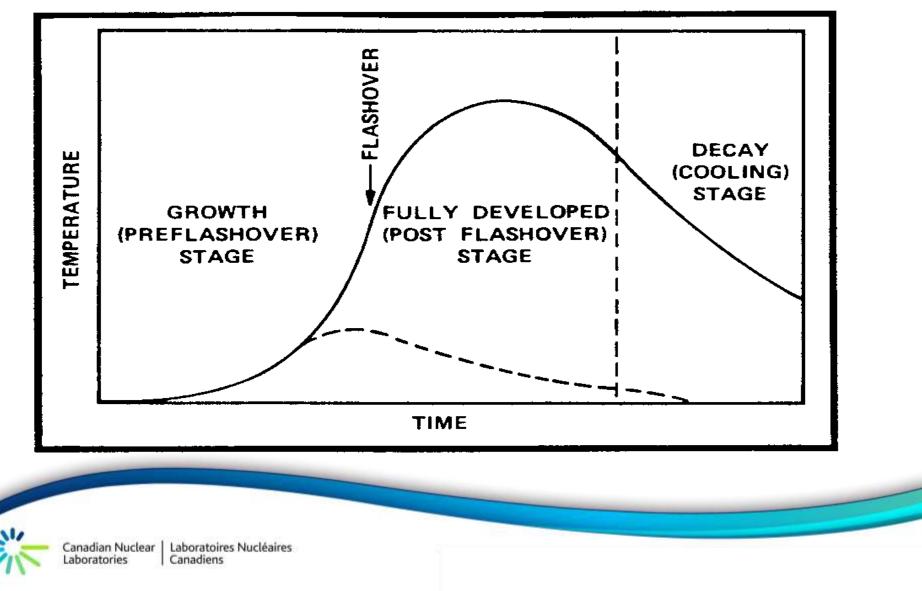
Introduction

Types of Models Applicability Case Study 1 Case Study 2 Case Study 3 **CFAST vs. Hand Calculations** CFAST vs. Hand Calculations Vs NUREG 1805 **CFAST Exercise**

Fire Development in Compartment Fires

- Ignition
- Period during which fire begins / Pilot ignition / Auto ignition
 - Growth
 - Initially fire grows without any compartment effects
 - Fire can be described in terms of HRR and product generation
 - With sufficient oxygen and fuel fire will continue to grow causing increase of compartment temperature

Flashover


- Flashover is defined as the event at which all combustible items in a room ignite due to high heat fluxes from the flames and the hot layer.
- Experimentally flashover occurs when the upper layer temperature reaches 500-600 °C.
- Another criterion used for flashover is the time at which the radiant heat flux to the center of the floor reaches 20 kW/m2 (reached when to hot layer temperature is 600 °C)
- This value is sufficient to ignite common light combustible materials in a short time.
- Transition from growing fire to a fully developed fire.

Fully Developed Fire

- HRR is the greatest during this stage
- Fire becomes ventilation controlled
- Flames issue from compartment openings (unburned fuel)

Decay

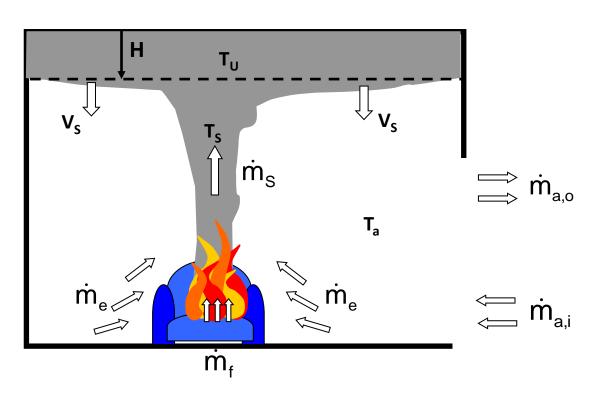
- Decay occurs as fuels become consumed by the fire and HRR declines
- Fire changes from ventilation control to fuel control

The Pre-flashover Fire:

Flashover:

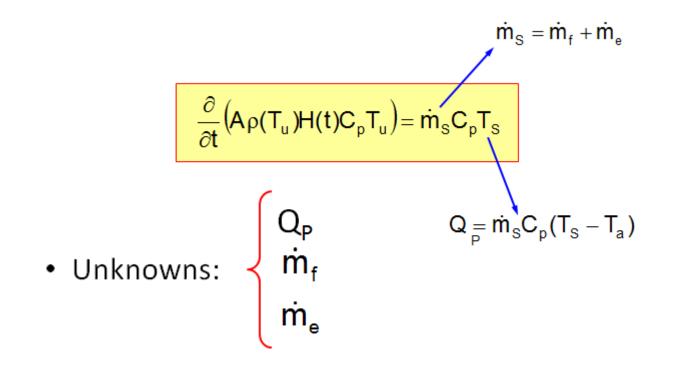
Canadian Nuclear | Laboratories

an Nuclear | Laboratoires Nucléaires tories | Canadiens


Fire Spread

- Fire may spread from the room of origin to adjacent rooms or adjacent buildings.
- Spread of fire is due to following:
 - Direct flame contact to combustibles in adjacent rooms
 - Radiation heat transfer
 - Conduction heat transfer through walls, doors
 - Flaming brands

Heat Transfer


- Conduction
- Through building elements
- Convection
- From hot layer to walls and ceiling
- Radiation
- From flames and hot layer to room boundaries

Upper Layer – The parameters that need to be evaluated are: -The temperature of the upper layer: T -The velocity at which the **Upper Layer** descends: dH dt V_s

These parameters can be obtained from, the ideal gas law and conservation of mass and energy in the Upper Layer

 $P = \rho R T_u$ $\frac{\partial}{\partial t} (A \rho (T_u) H(t)) = \dot{m}_s$ $\frac{\partial}{\partial t} (A \rho (T_u) H(t) C_p T_u) = \dot{m}_s C_p T_s$

The "Energy Release Rate"

$$Q = \Delta H_{c} \dot{m}_{f}$$

Mass of air entrained

$$\dot{m}_{e} = 0.20 \left(\frac{\rho_{a}^{2}g}{C_{P}T_{a}} \right)^{1/3} Q^{1/3} (H_{0} - H(t))^{5/3}$$

Mass Burning Rate: Generally obtained from empirical correlations

$$\dot{m}_{f} = f(D,Q,Fuel)$$

- Total Energy:
- Feedback is generally assumed to be small
- Radiation is assumed to be a fraction of the total energy released

 $\mathbf{Q} = \mathbf{Q}_{\mathsf{P}} + \mathbf{Q}_{\mathsf{F}} + \mathbf{Q}_{\mathsf{r}}$

 $Q_{\rm F} \approx 0$

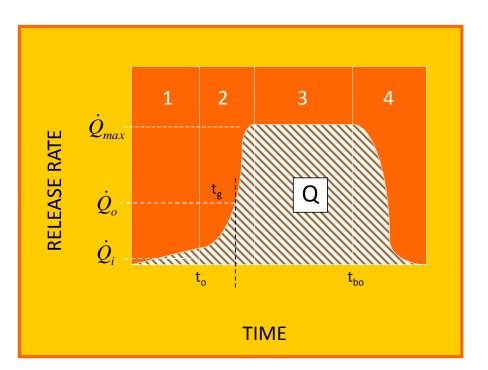
 $\mathbf{Q}_{r} \approx \chi \mathbf{Q}$ $\chi \approx 0.3$

 $Q_{P} \approx (1-\chi)Q \approx 0.7Q$

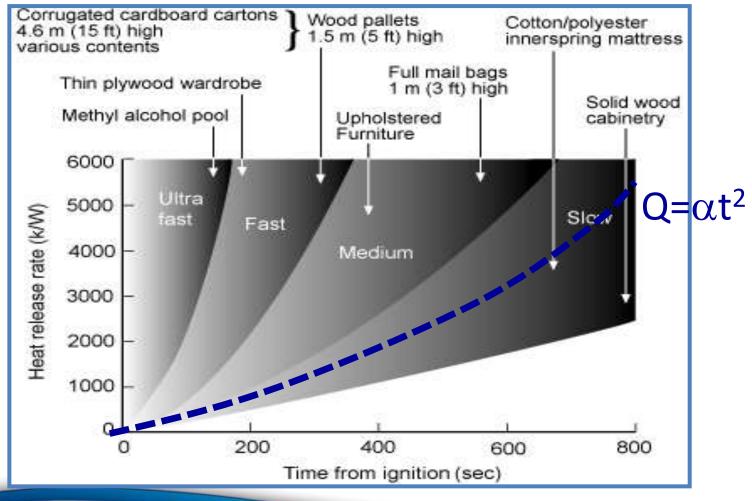
 Under these assumptions we can correlate everything with "Q"

$$Q = \Delta H_c \dot{m}_f$$

 There is no need to "calculate" Q_P directly

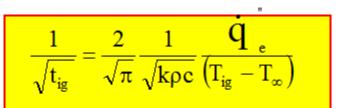

$$\dot{m}_{e} = 0.20 \left(\frac{\rho_{a}^{2}g}{C_{p}T_{a}} \right)^{1/3} Q^{1/3} (H_{0} - H(t))^{5/3}$$

$$\dot{m}_{f} = f(D,Q,Fuel)$$


Simple representation of the HRR

 $\dot{\mathbf{Q}} = \Delta \mathbf{H}_{C} \dot{\mathbf{m}}_{f} = \Delta \mathbf{H}_{C} \mathbf{A}_{B} \dot{\mathbf{m}}_{f}''$ $A_{\rm B} = \pi r^2 = \pi (V_{\rm f} t)^2 = (\pi V_{\rm f}^2) t^2$ $\dot{\mathbf{Q}} = \Delta \mathbf{H}_{\mathbf{C}} \mathbf{A}_{\mathbf{B}} \dot{\mathbf{m}}_{\mathbf{f}}'' = \left[\Delta \mathbf{H}_{\mathbf{C}} (\pi \mathbf{V}_{\mathbf{f}}^2) \dot{\mathbf{m}}_{\mathbf{f}}'' \right] \mathbf{t}^2 = \alpha \mathbf{t}^2$

➢Incipient heat release rate (Q*_i)
➢Incipient period (t_o)
➢Growth time (t_g)
➢Growth HRR(Q*_o)
➢Peak HRR (Q*_{max})
➢Total HR (Q)
➢Burnout time (t_{bo})



Canadian Nuclear | Laboratoires Nucléaires Laboratories | Canadiens

影

Ignition Properties

Material	T _{ig} [℃]	kρC	Critical
		[s.kW ² /m ⁴ K ²]	Heat Flux [kW/m ²]
Douglas Fir	382	0.94	16
Cedar	402	1.22	18
Iroko	410	1.30	17
Polyisocianurate	445	0.02	21
Polyurethane	390	0.30	16
PMMA	378	1.02	15
Acrilic	300	0.42	10

AN OPERATIVE MODEL

Equations

$$\begin{aligned} \frac{dm_i}{dt} &= \dot{m}_i \\ \frac{dP}{dt} &= \frac{\gamma - 1}{V} \left(\dot{h}_L + \dot{h}_U \right) \\ \frac{dE_i}{dt} &= \frac{1}{\gamma} \left(\dot{h}_i + V_i \frac{dP}{dT} \right) \\ \frac{dV_i}{dt} &= \frac{1}{\gamma P} \left((\gamma - 1) \dot{h}_i - V_i \frac{dP}{dT} \right) \\ \frac{d\rho_i}{dt} &= -\frac{1}{c_p T_i V_i} \left((\dot{h}_i - c_p \dot{m}_i T_i) - \frac{V_i}{\gamma - 1} \frac{dP}{dT} \right) \\ \frac{dT_i}{dt} &= \frac{1}{c_p \rho_i V_i} \left((\dot{h}_i - c_p \dot{m}_i T_i) + V_i \frac{dP}{dT} \right) \end{aligned}$$

mass equation

pressure equation

energy equation

volume equation

density equation

temperature equation

Fire Modelling is the evaluation of fire scenarios to answer questions about heat, smoke, and toxic gas production.

- Fire Modelling is used to:
 - → Develop accident scenarios from fire hazards and determine the consequences of a particular fire, example: radioactive release
 - → To evaluate performance or objective based design alternatives
 - → Provide guidance when prescriptive codes and standards do not address or conform to specific situations

•Fire modelling is used to determine:

- \rightarrow Heat release rate of a fire
- \rightarrow Height and size of a flame
- \rightarrow Flow of hot gases in a room
- \rightarrow Radioactive release
- \rightarrow Temperatures in the hot gas layer and in the room

popse to the fire

- \rightarrow Heat fluxes to objects in the room
- →Temperatures on adjacent items
- →Detector Activation

Agenda:

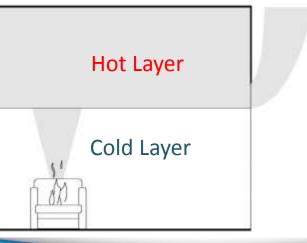
Introduction Types of Models Applicability Case Study 1 Case Study 2 Case Study 3 **CFAST vs. Hand Calculations** CFAST vs. Hand Calculations Vs NUREG 1805 **CFAST Exercise**

Hand Calculations:

 Hand calculations are correlations or simplifications to real world physics.

→ They are often developed from numerous experimental trials and have limited scope of applicability.

 Calculation methods have been developed for a wide variety of topics in fire safety including:

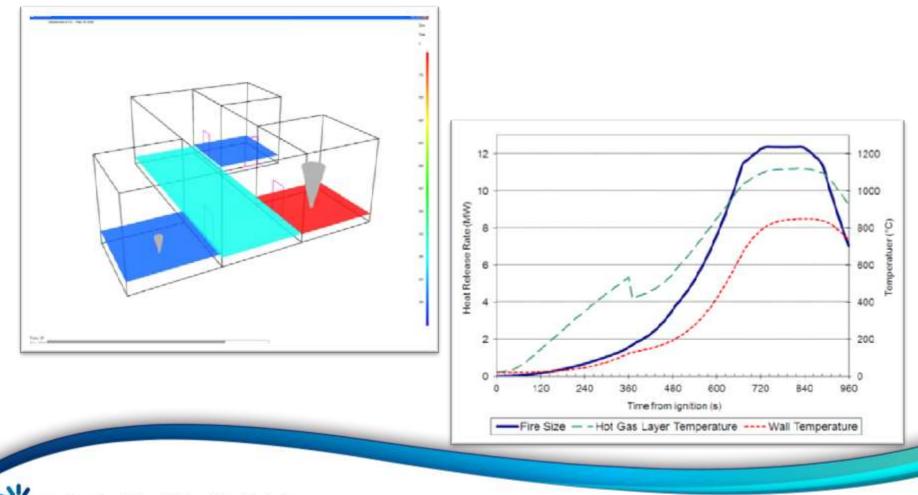

 \rightarrow Heat release rate from a fire $\dot{Q} = \alpha t^2$

- \rightarrow Flame height $l = 0.235\dot{Q}^{2/5} 1.02D$
- \rightarrow Radiation from a fire $\dot{q}^{"} = \varepsilon \sigma T^{4}$
- \rightarrow Occupant Evacuation time $t_{evac} = t_{travel} + t_{pre-evac}$

Two Zone Models:

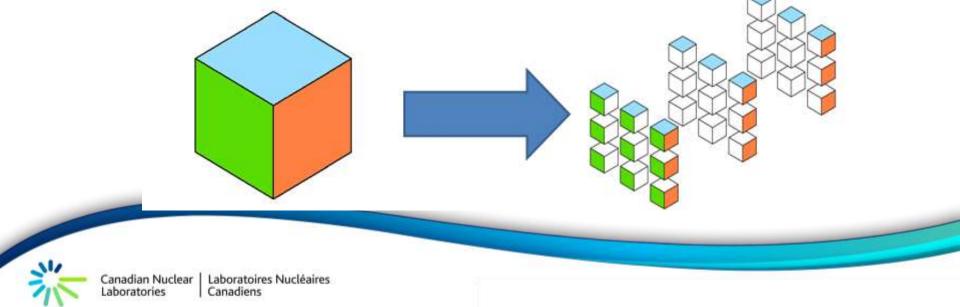
Two zone models rely on fundamental theories in physics but use basic knowledge of fire scenarios to simplify and approximate the equations.

- →As a room fills with smoke, it is approximated as having two distinct layers: a hot upper layer and cooler lower layer.
- →Fire compartments can be connected to adjacent compartments to form entire buildings.


Two Zone Models – CFAST Input Screen:

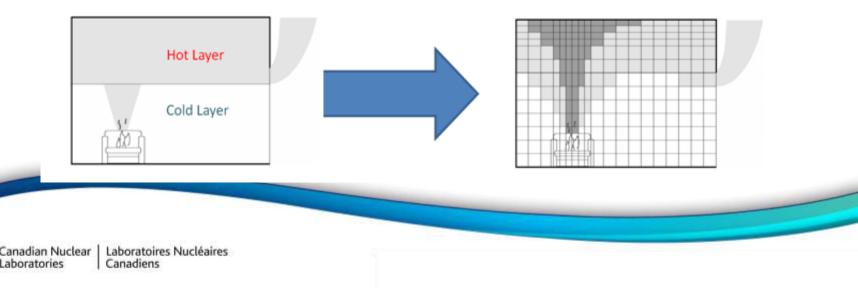
	Title: CFAST Simulation		Ambient Conditions				
			Temperature:	20 °C	Elevation:	0 m	
	Simulation Times Simulation Time:	900 s		101300 Pa	Relative Humidity:		
	Text Output Interval:	50 0	Exterior	-			
	Binary Output Interval:	0 0	Temperature:	20 °C	Elevation:	0 m	
	Spreadsheet Output Interval:	10 0	Pressure:	101300 Pa			
	Smokeview Output Interval:	10 0	Wind Speed:	0 m/s	Power Law:	0.16	
	Thermal Properties File		Scale Height:	10 m			
	thermal.csv						
							~
		u 1	and the second				
ors	Sa	ve Ge	ometry Run		View		
218	5a	ve Ge	ometry Run		View		
81C	Sa	ve Ge	ometry Run		View		

Two Zone Models – CFAST Input Screen:


```
l
    VERSN,6,CFAST Simulation
 2
     . .
 з
     !!Environmental Keywords
 4
     . .
    TIMES,450,-30,0,10,10
 5
 6
    EAMB,293.15,101300,0
 7
    TAMB,293.15,101300,0,50
 8
    CJET, WALLS
 9
    CHEMI,10,393.15
    WIND,0,10,0.16
10
1 1
     . .
12
     !!Compartment keywords
13
     . .
     COMPA,Container,2.34,5.88,2.39,0,0,0,STEEL1/8,OFF,STEEL1/8
14
1.5
     . .
16
     !!vent keywords
17
     !!
18
    HVENT,1,2,1,2.31,2.29,0,1,0.01,0,1,0.25
    EVENT,H,1,2,1,180,1,1
19
20
     !!
21
     !!fire keywords
22
     . .
23
     OBJECT,10 pallets,1,0.6,0.6,1,1,3,12500,0,0,1
24
     OBJECT,10 pallets,1,0.6,1.8,1,1,1,0,0,0,1
     OBJECT,10 pallets,1,0.6,3,1,1,3,12500,0,0,1
25
     OBJECT,10 pallets,1,0.6,4.2,1,1,3,12500,0,0,1
26
27
     OBJECT,10 pallets,1,0.6,5.4,1,1,3,12500,0,0,1
28
     OBJECT,10 pallets,1,1.8,0.6,1,1,3,12500,0,0,1
29
     OBJECT,10 pallets,1,1.8,1.8,1,1,3,12500,0,0,1
     OBJECT,10 pallets,1,1.8,3,1,1,3,12500,0,0,1
30
     OBJECT,10 pallets,1,1.8,4.2,1,1,3,12500,0,0,1
31
     OBJECT,10 pallets,1,1.8,5.4,1,1,3,12500,0,0,1
32
33
```

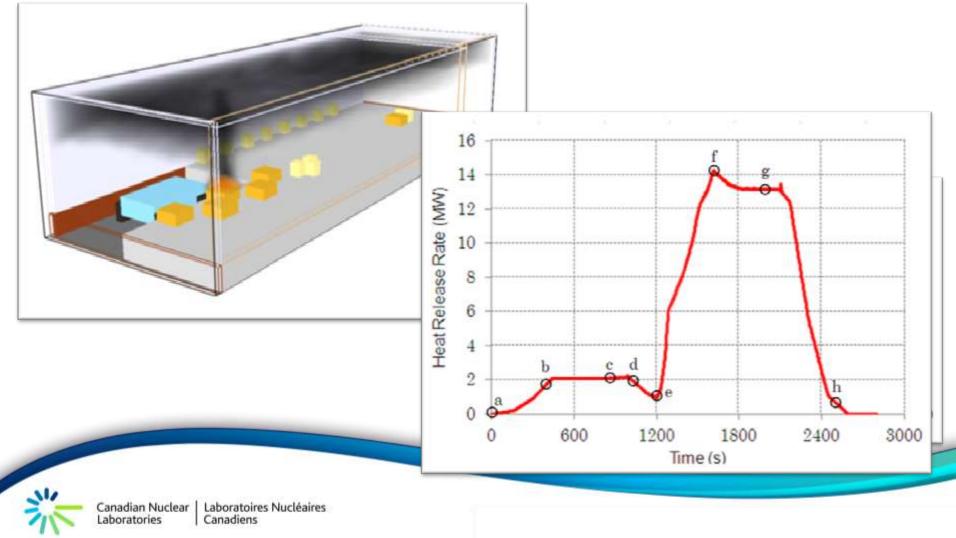
Two Zone Models – CFAST Outputs:

FDS Fire Simulations


- FDS (Fire Dynamic Simulator) models approximate fundamental physics equations for conservation of mass, energy, momentum, and species for small volumes.
 - → Three-dimensional volumes are broken up into a small cubes.
 - → Results can be grid dependant
 - ie. The smaller the cubes, the more accurate the simulation

FDS Fire Simulations

- FDS is on example of CFD (computational fluid dynamics) models that approximate fundamental physics equations for conservation of mass, energy, momentum, and species for small volumes.
 - \rightarrow Three-dimensional volumes are broken up into a small cubes.
 - → Results can be grid dependant


ie. The smaller the cubes, the more accurate the simulation

CFD Fire Simulations – FDS Inputs

**	SURFACES	
**	 тр	 = 'Lumber'
		- 'FineWood'
	_	- 'EXPOSED'
	_	- 1801
		0.02
	SPREAD RATE	
-		= 0.0, 0.4, 0.40 <i>f</i>
- &SURF	ID	= 'Ceiling Tile'
	MATL_ID	= 'PineWood'
	BACKING	= 'EXPOSED'
	RGB	= 234,234,234
	TRANSPARENCY	= 0.8
-	THICKNESS	= 0.02 /
& SURF	ID	= 'Ceiling Tile2'
	MATL_ID	= 'PineWood'
	BACKING	= 'EXPOSED'
	RGB	= 234,234,234
	TRANSPARENCY	= 0.0
-	THICKNESS	= 0.02 /
**		
** **	FIRES AND H	
		40, -0.20, 1.00, 0.00, 0.20, COLOR='SILVER' /
&OBST	XB = -0.40, 0.	40, 0.00, 0.80, 0.20, 0.40, SURF_IDS='Lumber','INERT','INERT', COLOR = 'GOLDENROD', ENDF_FACE(+3) = .TRUE.
GHOLE	XB = -0.40, -0	.20, 0.00, 0.20, 0.20, 0.40 /
GHOLE	XB = 0.20, 0.4	10, 0.00, 0.20, 0.20, 0.40 /
GHOLE	XB = -0.40, -0	.20, 0.60, 0.80, 0.20, 0.40 /
GHOLE	XB = 0.20, 0.4	10, 0.60, 0.80, 0.20, 0.40 /
\$\$		
**	Ceiling Til	
**		

CFD Fire Simulations – FDS Outputs

Agenda:

Introduction **Types of Models** Applicability Case Study 1 Case Study 2 Case Study 3 **CFAST vs. Hand Calculations** CFAST vs. Hand Calculations Vs NUREG 1805 **CFAST Exercise**

Applicability

Attribute	Model			
Attribute	Hand Calculations	CFAST	FDS	
Plume Temperature	Yes	Yes	Yes	
Ceiling Jet Temperature	Yes	Yes	Yes	
Hot Gas Layer Temperature	Yes	Yes	Yes	
Flame Height	Yes	Yes	Yes	
Sprinkler or detector activation	Yes	Yes	Yes	
Radiation to Targets in room	Yes	Yes	Yes	
Total Heat Transfer to Targets		Yes	Yes	
Wall Temperature		Yes	Yes	
Target Temperature		Yes	Yes	
Smoke Concentration		Yes	Yes	
Oxygen Concentration		Yes	Yes	
Room Pressure		Yes	Yes	
Combustion Reactions			Yes	
Obstacles in the room			Yes	
Complex room geometry			Yes	
Toxic gas production			Yes	
Sprinkler sprays			Yes	
Evacuation studies			Yes	

Canadian Nuclear | Laboratoires Nucléaires Laboratories | Canadiens

31

Applicability

Applicability of Models – Summary:

•Hand Calculations

- \rightarrow They are simple to use with relatively fast results.
- → Limited to fires involving one or two combustibles and objects in the fire plume. Correlations must be used within specified ranges.

•CFAST

- \rightarrow Can be used for multiple burning items and objects in multiple rooms.
- \rightarrow Limited to geometry without any obstructions.
- → More suitable for pre-flashover situations where the two-zone assumption holds true.

•FDS

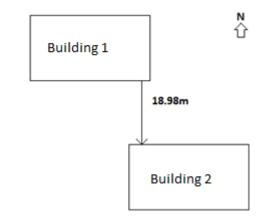
- $\rightarrow\,$ Performs detailed simulation of fire scenarios for complex geometry
- → Provides good visual outputs of fire phenomena
- \rightarrow Time intensive

Agenda:

Introduction Types of Models Applicability Case Study 1 Case Study 2 Case Study 3 **CFAST vs. Hand Calculations** CFAST vs. Hand Calculations Vs NUREG 1805 **CFAST Exercise**

BACKGROUND

•Building 1 and Building 2 contain low-level radiological waste in the form of soil and building materials stored in metal drums and metal boxes.


•Building 1 does not have adequate spatial separation required by the NBCC and FHA in regards to exposure protection. The building to which Building 1 may pose as an exposure hazard is Building 2 to the south. The spatial separation and exposure protection are based on minimizing radiant heat flux on adjacent buildings in order to prevent their ignition. To address that deficiency, the Building 1 FHA recommendation number 5 suggests upgrading "....the west exterior wall assembly of Building 1 that directly exposes Building 2 to provide a 1 hour fire resistance rating."

EVALUATION

The spatial separation between the exposed building (Building 2) and the fire source (Building 1) is 18.98m (see Figure 1 next slide). For the purposes of ensuring ultra-conservative measures the area of Building 1 is assumed to be one compartment.

A worse case fire scenario will be assessed to calculate the radiant heat flux (in kW/m^2) emitted from Building 1. This calculation is based on the total fire load available in the building, to determine if it is of sufficient value to ignite combustibles in adjacent buildings (Building 2); i.e. to determine if Building 1 poses as an exposure hazard. This radiant heat calculation was not calculated in the FHA.

Adjacent Building(s)

Building 1 BREAKDOWN OF COMBUSTIBLES

Combustible Type and Amount Contribution (Kg)

Wooden Shelving Units (2 small)
2 x 30 Kg = 60 kg
Wooden Pallets
90 x 20 kg = 180 kg

Total Combustibles = 240 kg

Fire Scenario:

All 90 wooden pallets and 2 small shelving units are burning simultaneously Location of these pallets is on the south end of Building 1 facing the north side of Building 2 for the least possible distance.

3 pallets on top of each other = 30 stacks (each stack of 3 pallets)

Critical Conditions for Building 2 to ignite:

The critical value for ignition of the adjacent unprotected wooden building is 12.5kW/m². This radiant heat has to travel a distance that exceeds 18.98m. The equation below is specifically designed for standards pallets. Therefore the length, height and width are included within the formula.

 $H_c = 25 \text{cm} = 0.25 \text{m}$ <u>Pallet Dimensions:</u> Height = 10-1/4" = 25 cm (3 wooden pallets stacked on top of each other) Width = 49" = 122 cm Length = 49" = 122 cm

 $\dot{Q} = 1,000 (1 + 2.14 h_c)(1 - 0.027 M)$ $\dot{Q} = heat release rate (kW)$ $h_c = stack height (m)$ M = moisture content@ T = 20C & RH = 35% M = 0.09

Total Q =1531 kW x 30 stacks = 45930 kW

Mass of wooden shelving units M = 60 kgCalorific value $\Delta Hc = 16 \text{ MJ/kg}$

Energy content of fuel:

 $E = M \Delta H c = 60 \text{ kg x } 16 = 960 \text{ MJ}$

Surface burning rate $q = 0.009 \text{ kg/s/m}^2$ (soft board wood)

Wood crane floor area $Af = 28.908m \times 12.171m = 351.839 m^2$

Specific heat release rate

 $Qs = q\Delta Hc = 0.009 \times 16 = 0.144 \text{ MW/m2} = 144 \text{ kW/m2}$

Total heat release rate

Q =*Qs* Af = 144 x 351.839 = 50664.816 kW

Total Q = Qpallets + Qshelving = 45930 kW + 50664.816 kW = 96594.816 kW

$$\dot{\mathbf{q}}'' = \dot{\mathbf{Q}}_{rad} \frac{\cos\theta}{4\pi r^2}$$

Therefore, $Q_{rad} = Q_{total} \times 0.3 = 96594.816 \text{ kW} \times 0.3 = 28978.4448 \text{ kW}$ is radiant heat flux

 Q_{total} is total heat release Q_{rad} is radiant heat Where $\theta = 0$ and $\cos \theta = 1$. 12.5 kW/m² = <u>28978.44 kW</u> $4\pi r^2$

r = 13.58 m

Therefore, 13.58 m < 18.98 m.

With the present combustible load the critical radiant heat travels 13.58 m. This distance is less than the actual distance (18.98 m) between Building 1 and Building 2. Therefore, it does not meet the ignition condition.

Agenda:

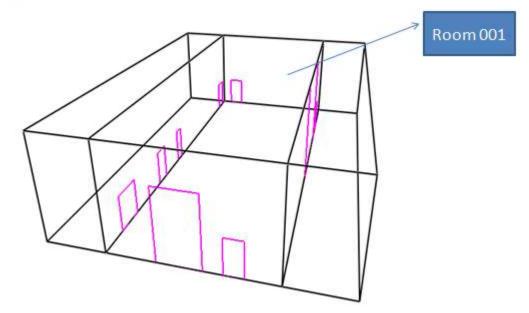
Introduction **Types of Models** Applicability Case Study 1 Case Study 2 Case Study 3 **CFAST vs. Hand Calculations** CFAST vs. Hand Calculations Vs NUREG 1805 **CFAST Exercise**

Life Safety & Flashover for Building 1 (Room 001) :

The design basis fire conditions are simulated using a computer based fire model and representative outputs are shown below in Building 1 in Room 001. The model used for the analysis of fires in the units is CFAST, Version 6.0.10.

The 2 zone model is designed with the following conservative assumptions:

•Assume that all wall and partitions are plywood with no fire retardant painting.


•Assume 2 fires at the same time and in the same place (kerosene and 2 panel work station).

•Assume that all doors were closed at all time and that there were no windows for life safety calculations.

•Assume door are open and there is 2 windows for flashover calculations.

➢ The output of the CFAST model is summarized in figures 1- 4 below. The output confirmed that there are no life safety issues; no flashover and no fire spread concerns in Room 001.

CFAST input

CFAST input

Compartment	Num	Width	Depth	Height	X Positio	n YPosition	2 Position	Ceiling	Walls	Floor	F.	H	¥	M	D	T
Room 001		11	5	8.8	0	1 2	0	dyseum:	avpeum	acoutile	0	1	0	0	0	.0
Compartment 3	2	31	13.1	8.8	0	5	0	gypeum gypeum	gypeum gypeum	acoutile	0	2	0	0	0	0
			-			-							*			Ĩ.
			Add	Duplic	tate	Move Up	Move	Down		Remove	1					
				1												
ompartment 1 (of 3)			~	rpartment N		patinent 1										
			500	aparament re	erre. poe	parmers 1										
Geometry																
George							Advanced					10020			السنا	
	da .		and an X	f0.m	_		10	Flow Cha	racteristics		-	0011125		s-sect	1.124	ves
Width (0) [3		P	osition, X				10	Flow Cha	nacteristics - cone model	-	-	/oriabl Height		-	ional J vea	
		P		[0 m	=		10	Flow Cha		-	-	0011125			1.124	ves i
West (1) 5		P	У.				10	Flow Cha		-	-	0011125			1.124	vee
Width (0) [3		P	У.	[0 m	=		10	Flow Cha			-	0011125			1.124	
West (1) 5		P	У.	[0 m			10	Flow Cha		-	-	0011125			1.124	• •
West (1) 5		P	У.	[0 m			10	Flow Cha			-	0011125			1.124	Ves
Vilder, 00 (3) Depth. (1) (5 Height (2) (8 Materials	a Bra		Y Z	0 m 0 m	e. 500	um Board 5/8	[Nomal (S	Flow Cha	-cone model	-		Height			veo	
Vitam (X) (3) Depth (Y) (5) Height (Z) (8) Materials Ceiling: Sign	e Em : eum Board (5	8+0	Y Z	0 m 0 m	100 C 100	um Board (5/3	(Nomal G	Flow Cha Randard two		Acoust	c Tie (Height (1/3 m))	A	1.124	kes ()
Vilati (X) (3) Depth (Y) (5) Height (2) (8) Materials Ceiling (Grp Con	n Dim Rum Board (Si Suctivity: 0.00	13 eri) 1016 kivilijen	Y Z T	0 m 0 m	Con	buctivity 0.000	Nomal (S n) 15 Kivil(m 10	Flow Cha Randard two	-cone model	. Accuse Conduc	c Tie ((1/8 m) 5.8E-0) 5 kWI	A (m °C)	veo	
Visite (X) (3) Depti (Y) (5) Height (2) (8) Materials Ceiling (5) Con Spe	e Em : eum Board (5	13 in) 16 kivil(in kJ(kp *C)	Y Z T	0 m 0 m	Con Spec		Pional (n) 15 Kivil(m *C Ji(kg *C)	Flow Cha Randard two	-cone model	Acoust	c Tie (bvity) Heat	(1/8 v) 5.8E-0 1.34 k) 5 kWI(A (m °C)	veo	-

CFAST input

Rear Rear Rear Left Right Right	1	0	1.5	3	0	0	Compartment 1		Hoom 001	and the second se
Rear Rear Left Right	1	0		3			Contraction of the second seco	10		
Rear Left Right						0	Compartment 1	16	Room 001 Room 001	2
Left Right	1		1.5	3	0	0	Compartment 1	20	Room 001	3
Right		0	2.5	3		0	Compartment 1 Outside	26	Room 001	4
		0	1.5	3	0	0	Outside	9	Room 001	e e
Progett		ŏ	3.5	é	0	ő	Outside		Room 001	
Rear		0	1.5	3	0	ő	Compartment 3	5	Room 001	1.2
Rear		ő	9	8.8	0	0	Compartment 3	8	Room 001	
Freist				0.0			Costonness 9		Photomic God 1	
										Vent 1 (of 9)
100			erit.						and the state of t	
-				rtment 1	Icouba	-			Proom 001	
		-	t Offset.	Vent			m	t Offset. 1	Ven	
				-		action 1	Initial Opening Fri	-	Sat 0 m	
									and the second second	
-		Angle 0*	Wind #			and the				
-		Angle 0* Face Re				tion At: 0 #	Change Fract		Soffie 3 m	
		Remove	ent. 1. Offset. [0]	Sown	Move D	Nove Up	Duplicate M	kaa	Secmetry First Compartment [Room 001 Ven Sall [0 m	Vent 1 (of 9)

CFAST input

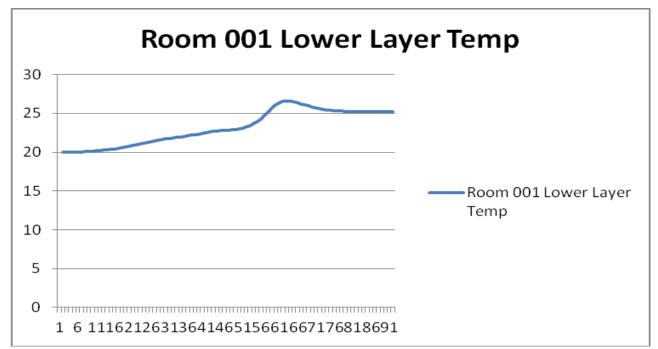
Num	From Compartment	From Sec. 1	From Melabi	Form View	To Compartmen	t To Area	To Height	To Total	Flow	Dropoff	Zero Flow
Num	Room 001	Prom wes	0	Vertical	Outside	2	10 Meight	Vertical	-01	Uvopotr	JON 1
3											
		Add	Du	plicate				Rec	nove		
	Went 1 (of 1) G	eometry									
	From Compa					To Compartment	S				
	Room 001				-	Outside					
	Area: 2m	8	Center Hei	ght: 0 m		Area: 2m ²		Center Heij	phi: 0m		† I
		Orientation	Vetical	•			Orientation:	Vetical	-		
	Flo	v Rate 0.8 m	~3/s	Initial Op	pening Fraction	1	-				
	Service Dec	polf At 200 i	Pa		inge Fraction At	0.	Fib	er Efficiency	io x		
	Degri Di	donine lenn.		Cris	inge riscson Ac	100	6.	gin Filter As	- f0 +		

CFAST input

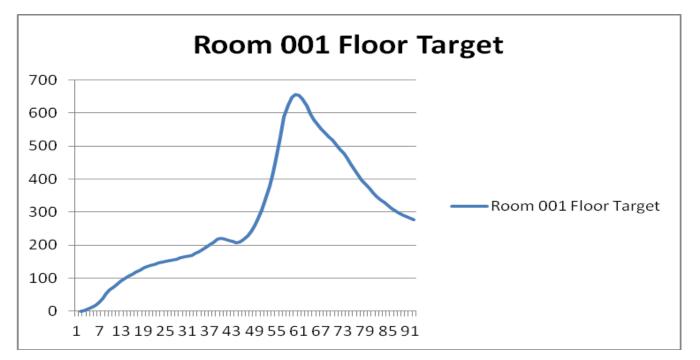

Num:	Compartment	Object	Type		At Value	X Position	Y Position	Z Position	Peak Q	18	
2	Room 001	New Fire	Constrained		0	16	6.5	0	1054		Ceiling Jet. Ceiling & Wa
											Lower Oxygen Limit 10 %
										-	Gaseous Ignition 120 °C
		Add	1 1	Duplicate		Remove	1				
- Fe	e 1 (of 2)		1		1 1		1				
				Comparter	vent Room	001					
	Type: Constrained	· Dealer	an X 16=	-	Position Y	16.5m	-	osition Z	0.ex	- :	Ignition Criterion
	and the second second		1910	_		100		학생님 가지 않는			
1	Normal, X: 0	Norm	al, Y: 0		Normal, 2	s b		Pume.	McCalliny	•	Ignition Value: 0 #
Fi	re Object										
	Fire Object 3 conel of	workstation	•	Edit	1			3	panel wo	rkstati	ion HRR
											A 1
	Material: Wood, Softwo Length: 18.25 m	ods (fir, pine) (;	504 m)			6000					(1]
	Width: 12.2 m					4000				10	/ \]
	Thickness: 0.25 m Molar Mass: 0.009 kg/r	nal								1	
	Total Mass: 920 kg					2000				1	
	Heat of Combustion: 16 Heat of Gasification: 35									/	
	Volitilization Temperat	ve: 120 °C							/		
	Radiative Fraction: 0.3						100 million - 10		C		

CFAST input

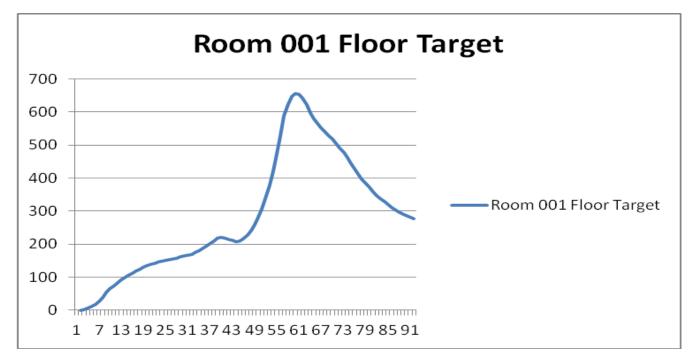
Num	Compartment	Type	XPosition	Y Position	Z Position	Activation	P(T)	Spray Density .
2	Hoom 001 Room 001	Sprinkler Sprinkler	15.5 23	5	8.8	73.89001 73.89001	100	76-05
	Room 001	Sprinkler	8	5	8.8	73.89001	100	7E-05
4	Room 001	Sprinkler	8	10	8.8	73,89001	100	7E-05
5	Room 001	Sprinkler	15.5	10	8.8	73.89001	100	7E-05
	Room 001	Sprukler	23	10	2.8	73.89001	100	76-05
		100	1	1.00	· · · · · · · · · · · · · · · · · · ·) <u> </u>		2
	Adı	Da	plicate	Move Up	Move Down	0	Remove	1
	Ad	D4	plicate	Move Up	Move Down	C	Remove]
- Name (146)	Ad	D4	plicate	Move Up	Move Down	C	Remove]
- Alarm 6 (of 6)						[]
Alarm 6 (of 6) Type: S		Da				C Activa) Murre: [73.89001 °C
112230033320						E Activa) Mare (73.89001 °C
112230033320		Compa				E Activa) 173.85001 °C
112230033320	nider 💽 Positi	Compa					tion Temper	0.um (73.85001 °C
112230033320	nider 💽 Positi	Compa] mare [73.85001 °C
112230033320	mider •	Compa m h (X): [23 m				RTA (1	tion Temper 00 (m s)*0 5] Mure: [73.89001 °C
112230033320	mider •	Compa				RTA (1	tion Temper] mare (73.85001 °C
112230033320	witter Positi Vid Deg	Compa m h (X): [23 m				RTA (1	tion Temper 00 (m s)*0 5] Mure: [73.89001 °C



CFAST output:


Conclusion: Maximum upper layer temperature was 124 C which is much lower than the flashover temperature between (500 – 600 C). Note that as this is upper layer temperature the sprinkler system will activate by 80 C.

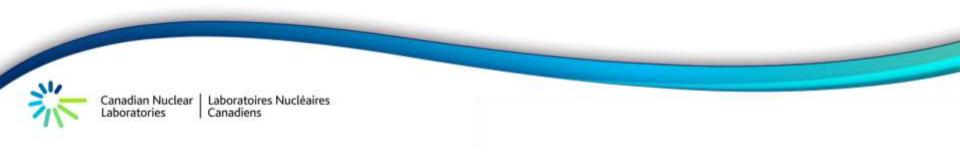
CFAST output:


Result: There is no human skin threat as the maximum temperature of 27 C didn't exceed the safety limit of 120 C at 1.5 meter.

CFAST output:

Conclusion: There will be no flashover as the maximum radiant heat flux was 0.65 KW/m2 and the flashover radiant heat flux is over 20 KW/m2.

CFAST output:


Conclusion: There will be no human skin threat as the maximum radiant heat flux was 0.65 KW/m2 and didn't exceed the skin safety limit of 2.5 KW/m2.

Conclusion

➤The output of the fire model (CFAST) confirmed that there are neither life safety concerns nor flashover in Room 001 in Scenario 2 in Building 1 FHA

Recommendation

Sealing all penetrations/holes through partitions or ceiling structures and painting the plywood/masonite walls/ceilings/doors/mezzanines with fire retardant paint. (ULC listed fire stop).

Agenda:

Introduction **Types of Models** Applicability Case Study 1 Case Study 2 Case Study 3 **CFAST vs. Hand Calculations** CFAST vs. Hand Calculations Vs NUREG 1805 **CFAST Exercise**

Recommendation 5 from the Building 1 FHA states that:

>"Upgrade the structure to provide 45 min fire-resistance rating for the combustible load bearing walls, columns and arches supporting the floor assemblies. Also floor assemblies and combustible mezzanines to be upgraded to provide fire resistance rating of at least 45 minutes. Please note that existing elements may already have the required fire-resistance rating, however this could not be ascertain as based on the available documents. Due to the fact that the building is existing, and this issue has no nuclear safety impact, and the fact that this undertaking may be impractical and cost prohibitive, alternate approaches, such as additional sprinkler mitigation, or other measures may be considered subject to AHJ approval. A further review indicating proposed mitigating measures is recommended. The Building Condition Assessment Report has additional details of the required measures to achieve 45 minutes fire resistance ratings."

•In room 304, the total combustible loads were decreased form 1.40E+04 kg & 5.33E+08 kJ on May 19/2010 to 1935.64 kg & 5.04E+07 kJ on March 17/2014.

•In area 130, the total combustible loads were decreased form 7520 kg & 1.54E+08 kJ on May 19/2010 to 2101.69 kg & 7.82E+07 kJ on March 17/2014.

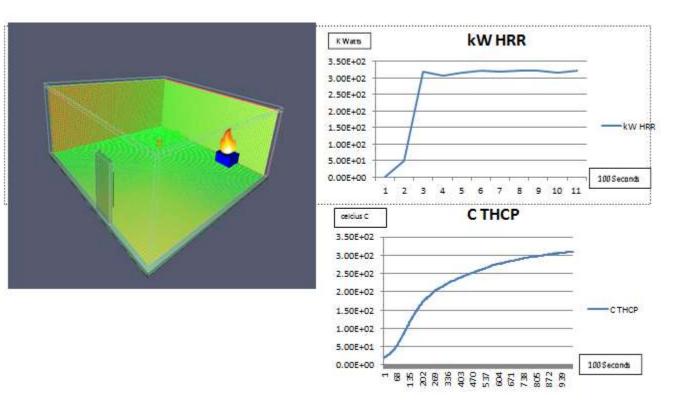
The main objective of this model was to evaluate the maximum temperature in area 130 & room 304, determine if radiation emitted from the fire scenario 1 & 3 is enough to ignite adjacent objects and the if there is possibility for fire flashover?

•The design basis fire conditions were simulated using a computer based fire model. The model used for the analysis of fires in the units was FDS.

•FDS is a multi- zone model. These models are based on fundamental laws of physics rather than empirical correlation. For this reason, CFD models offer the most adaptable approach for solving problems. Though, due to their difficult nature, they need expert knowledge from the user.

•The design basis fire conditions were simulated using a computer based fire model. The model used for the analysis of fires in the units was FDS.

•FDS is a multi- zone model. These models are based on fundamental laws of physics rather than empirical correlation. For this reason, CFD models offer the most adaptable approach for solving problems. Though, due to their difficult nature, they need expert knowledge from the user.


For Room 304

•A mesh size of 80 cm x 80 cm x 30 cm was used in the FDS model. The fire was modeled using Q = 1000kw/m2. This methodology assumes a t²fire is growth. The materials that were used in the model for the floor, walls and ceiling were plywood and tiles.

•There was a Thermocouple THCP added inside the room with coordinates (4m, 4m, and 1m) for the purpose of keeping a registry of the temperature at this specific location.

FDS Output:

- The maximum HRR is 322 KW and 310 C; therefore there were will be no fire flashover in this scenario
- **Employ the simple model:** The flame is characterised as a point source at midheight along the centre line of the vertical axis of the flame. The heat flux at some distance r from this point source is:

$$q'' = Q_{rad} \frac{\cos \theta}{4\pi r^2}$$

Therefore, Q_{rad} = Q_{total} x 0.3 = 322 KW x 0.3 = 96.6 KW

 $\frac{1}{q^{\prime\prime}}$ is radiant heat flux

Q_{total} is total heat release

Q rad is radiant heat

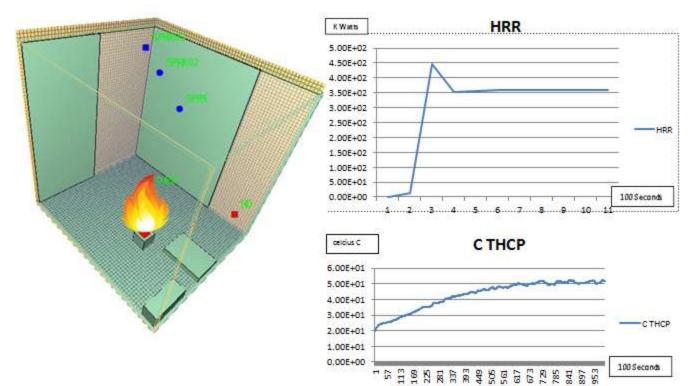
Where $\theta = 0$ and $\cos \theta = 1$.

12.5 kW m⁻² is the critical radiant flux for the ignition of wood

 \dot{q} "net = net heat transfer leaving surface 12.5 (kW m⁻²) 12.5 kW/ $m^2 = \frac{xkW}{4\pi r^2}$

$$12.5 \ kW \ / \ m^2 = \frac{96.6 \ kW}{4\pi r^2}$$

r = 0.78 m


 The maximum calculated radiant heat emissive distance is 0.78 m and will not ignite any objects beyond 0.78 m.

For Area 130

•A mesh size of 105 cm x 125 cm x 125 cm was used in the FDS model. The fire was modeled using Q = 1000kw/m2. This methodology assumes a t²fire is growth. The materials that were used in the model for the floor, walls and ceiling were Plywood, Yellow pine and tiles.

•The sprinkle system will activate at 78 C and was placed on the ceiling of the room 130 at 12.2 m height. There was a Thermocouple THCP added inside the room with coordinates (6m, 5m, and 3m) for the purpose of keeping a registry of the temperature at this specific location.

FDS Output:

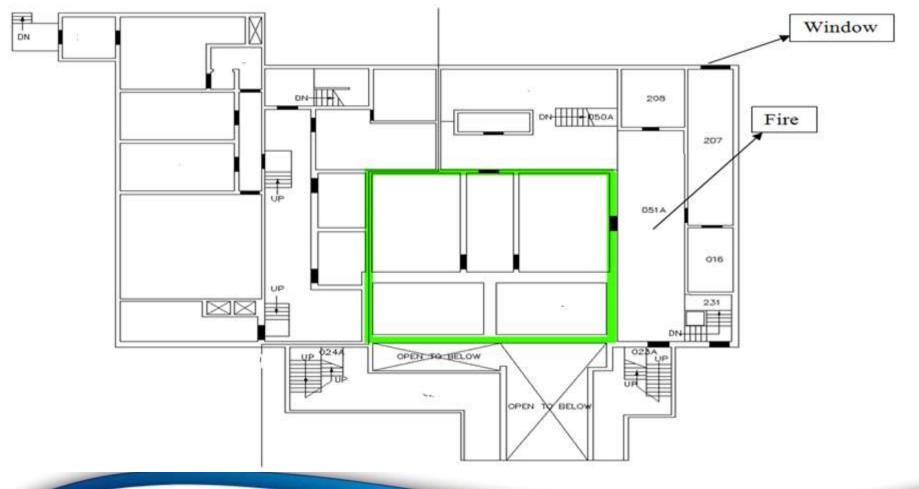
- Since the maximum HRR is 360 KW and 310 C, therefore there were will be no fire flashover in this scenario. As the sprinkle system will activate at 78 C. Even though the sprinkle system is located at the ceiling which is 12.2 m high, it will fully contain and suppress the fire.
- Employ the simple model: The flame is characterised as a point source at midheight along the centre line of the vertical axis of the flame. The heat flux at some distance r from this point source is:

$$\dot{\mathbf{q}}'' = \dot{\mathbf{Q}}_{rad} \frac{\cos \theta}{4\pi r^2}$$

Therefore, $Q_{rad} = Q_{total} \times 0.3 = 360 \text{ KW} \times 0.3 = 120 \text{ KW}$ q'' is radiant heat flux Q_{total} is total heat release Q_{rad} is radiant heat Where $\theta = 0$ and $\cos \theta = 1$.

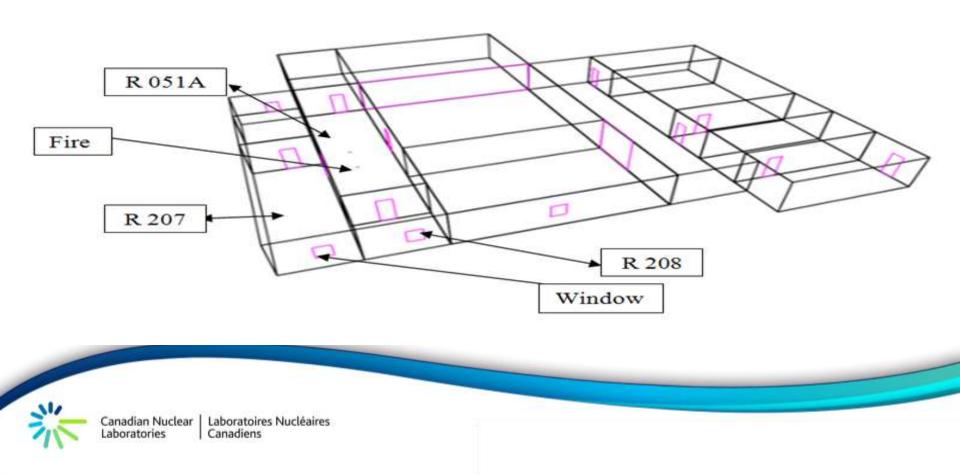
New Recommendations for Building 1 based on Additional Fire Hazards

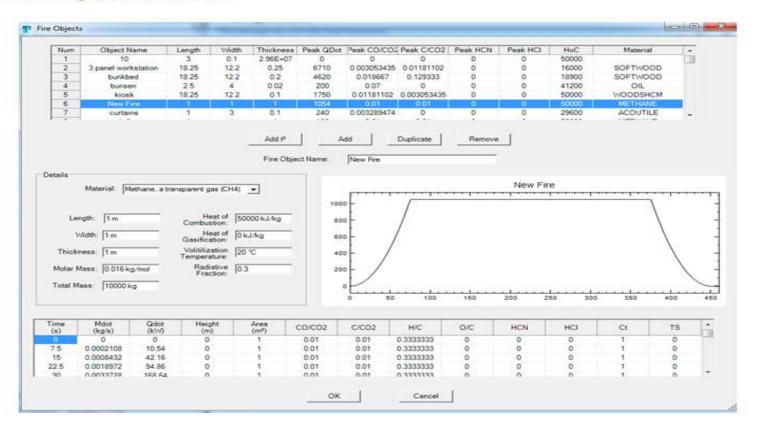
Deficiency	Additional Recommendations	Priority	Status
Reduce & monitor the amount of combustible materials in Building 1	Obtain photographs of Building 1 rooms identifying the current configuration and provide to Fire Protection Program. Photographs to be maintained by Chief Fire Prevention Officer as a reference point to ensure that there are no additional combustibles accumulating over the years and to assure that these conditions are maintained between the monthly inspections.	Medium	
Absence of non-combustible storage cabinets in room 304	Provide non-combustible storage cabinets for room 304.	Medium	


Agenda:

Introduction **Types of Models** Applicability Case Study 1 Case Study 2 Case Study 3 **CFAST vs. Hand Calculations** CFAST vs. Hand Calculations Vs NUREG 1805 **CFAST Exercise**

•The design basis fire conditions were simulated using a computer based fire model. The model used for the analysis of fires in the units was CFAST, Version 6.0.10. This program is supported by appropriate technical documentation and is widely accepted. The program was verified as being appropriate for the applications used in this building.


•The 2 zone model fire scenario was designed assuming an ultra fast fire growth rate t^2 and the material is 1 m³ of methane with heat of combustion of 50,000 kJ/kg in room 051 in B200.



CFAST input

Smonarcane 5.1.3 - May 10 2008

CFAST Fire input in Room 051:

CFAST simulation input:

	· · · · · · · · · · · · · · · · · · ·		w Vents Mechanical Row Vents	a foreign and the second	and any any and a	L readers L ensidere	
т	iste: CFAST Simulation		Interior				-1
	Simulation Times		Temperature:	20 °C	Elevation:	0 m	
	Simulation Time:	900 s	Pressure:	101300 Pa	Relative Humidity	[50 %	
	Text Output Interval:	50 s	Exterior				=
	Binary Output Interval:	0=	Temperature:	[20 °C	Elevation:	[0 m	
	Spreadsheet Output Interval:	10 s	Pressure:	[101300 Pa	-		
	Smokeview Output Interval:	[10 s	Wind Speed:	0 m/a	Power	0.16	-
				-	Law	1	
r	Thermal Properties File		Scale Height	10 m			
	themal.csv		1 J.				
Warning: Fire object Warning: Fire object Warning: Fire object Warning: Fire object Warning: Fire Object Warning: Fire Object	ct bunsen. One or more fire area valu ct 3 panel workstation. One or more fi 10. Radiative fraction is less than 0 ct 10. Volitikation temperature is less 10 has a heat of COmbustion less ct 10 has a molar mass less than 0 k	ire area values are less tha 0 or greater than 1 than 173.15 °C or greater than 1E+07 J/kg or greater g/mol or greater than 292 i	an or equal to 0 m² or greater than than 873.15 °C. erthan 1E+09 J/kg.	n10000 m².			
Warning: Fire object Warning: Fire object Warning: Fire object Warning: Fire Object Warning: Fire Object Fatal: Vertical flow Fatal: Vertical flow Fatal: Vertical flow	ct 3 panel workstation. One or more f ct 10. Radiative fraction is less than 0 ct 10. Voltilization temperature is less ct 10 has a heat of COmbustion less ct 10 has a molar mass less than 0 k ct 10 has a thickness less than 0 m vent 1. Cross-sectional area is less th vent 1 is not connected between tw ct 10 has a molar mass less than 0 k File Syntax Oheck 0	ire area values are less tha 0 or greater than 1 than 173.15 °C or greater than 1E+07 J/kg or greater g/mol or greater than 292 i or greater than 100 m. han 0 or greater than comp o existing compathments. S	an or equal to 0 m ² or greater than than 873, 15 °C. er than 1E+09 J/kg. kg/mol. bartment floor area. Select compartment connections.				
Warning: Fire object Warning: Fire object Warning: Fire object Warning: Fire Object Warning: Fire Object Warning: Fire Object Fatal: Vetical flow Fatal: Vetical flow Warning: Fire Object Inot.	ct 3 panel workstation. One or more f ct 10. Radiative fraction is less than 0 ct 10. Voltilization temperature is less ct 10 has a heat of COmbustion less ct 10 has a molar mass less than 0 k ct 10 has a thickness less than 0 m vent 1. Cross-sectional area is less th vent 1 is not connected between tw ct 10 has a molar mass less than 0 k File Syntax Oheck 0	ire area values are less tha 0 or greater than 1 than 173.15 °C or greater than 1E+07 J/kg or greater g/mol or greater than 292 i or greater than 100 m. han 0 or greater than comp o existing compathments. S	an or equal to 0 m ² or greater than than 873, 15 °C. er than 1E+09 J/kg. kg/mol. bartment floor area. Select compartment connections.		View		
Warning: Fire object Warning: Fire object Warning: Fire object Warning: Fire Object Warning: Fire Object Warning: Fire Object Fatal: Vetical flow Fatal: Vetical flow Warning: Fire Object Inot.	ct 3 panel workstation. One or more f ct 10. Radiative fraction is less than 0 ct 10. Voltilization temperature is less ct 10 has a heat of COmbustion less ct 10 has a molar mass less than 0 k ct 10 has a thickness less than 0 m vent 1. Cross-sectional area is less th vent 1 is not connected between tw ct 10 has a molar mass less than 0 k File Syntax Check 0 rigs	ire area values are less tha 0 or greater than 1 than 173.15 °C or greater than 1E+07 J.Kg or greater g/mol or greater than 2921 or greater than 100 m. han 0 or greater than comp o existing compartments. S g/mol or greater than 2921	an or equal to 0 m ² or greater than than 873.15 °C. er than 1E+09 J/kg. kg/mol. belect compartment connections. kg/mol.		View		

CFAST Room 051:

	t Comp	artment G	ieometry I	Horizontal Fl	ow Vents V	ertical Flow V	/ents Mech	anical Flow V	ents Fires	Detection	/ Suppressi	on 1	Targets	Surfa	ace Cor	nections	1
Compartment		Num	Width	Depth	Height	X Position	Y Position	Z Position	Ceiling	Walls	Floor	F	н	V	M	DT	
201/209/210/20	00	6	4	17	3	7.2	7.2	0	concrgyp	gyp3/4	concrete	0	3	0	0	0 0	
050/211		7	10	7	3	11.2	17.2	0	concrgyp	gyp3/4	concrete	0	2	0	0	2 0	
38/39/37/35/36	_	8	10	17	3	11.2	7.2	0	concrgyp	gyp3/4	concrete	0	2	0	0	0 0	
051A	200	9	35	14	3	21.2	7.2	0	concrgyp	plywood	concrete	-	4	0	0	0 0	-
				Add	Duplic	ste	Move Up	Move	Down		Remove						
mpartment 9 (of 15)			Con	partment Na	me: 051A	6										
Geometry								Advanced		racteristics		5	Variable	e Cros	s-secti	onal Area	
Width (X): 3.5 m		Po	osition, X:	21.2 m			Normal (S	Randard two	-zone model		-	Height		A	rea	-
Depth (Y): 14 m			Υ:	7.2 m												
Height (Z);]3 m			Z:	0 m												-
Materials																	
	-				1						-						
	Conducti	vity: 0.00	composite 017 k\///(m		Wa	Condu	od (1/2 in) activity: 0.000			Floor	Conduc	tivity:	0.0017	5 k\v//((D* m	-	
1 2			9 kJ/(kg °C)			fic Heat 1.21				Specific	Heat	t 1 kJ/()	kg *C)			
	Density:	930 kg/m	^3			Densit	ty: 545 kg/m [*]	3			Density	2200	0 kg/m~	3			
	Thicknes	s: 0.0127	m			Thick	ness: 0.013 n	n			Thickne	ss: 0	.15 m				
	2000111-0001																

CFAST Room 051 door:

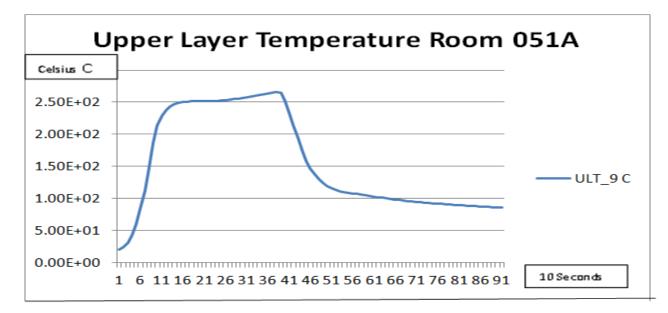
	Num 1	First Compartment	Offset 1		Offset 2	Sill	Soffit	Width	Wind	Initial Open	Face	~	
		203	1.5	Second Compartment Outside	0	0	2	0.7	0	1	Left		/ /
	2	203	5	204	0	0	2	0.7	0	1	Rear		/
	3	206	5	205	0	0	2	0.7	0	1	Rear		1
	4	207	0.5	201/209/210/200	0	0	2	0.7	0	1	Right		
	5	205	0.5	201/209/210/200	0	0	2	0.7	0	1	Right		
L	6	201/209/210/200	10	050/211	0	0	3	3	0	1	Right		
	7	051A	1.5	208	0	0	2	0.7	0	A REAL STREET	Rear		1
	8	38/39/37/35/36	6 5	051A	0	0	2	0.7	0	1	Right		/
	9	050/211 208	1	Outside	0	1	2	0.7	0	1	Rear	-	
			Add	Duplicate	Move Up	Move	Jown	1	Remove				
Vent 7	7 (of 16)	Geometry											18
		First Compartment				and the second s	nd Compartme	ent				1	1
		051A			<u> </u>	208					-	6	4
		Ven	nt Offset: 1	.5 m			Ver	nt Offset: 0	/m				
		Sill: 0 m		Initial Opening Fr	raction: 1		_				-		
		Soffit: 2 m		Chaope Fra	action At: 0 s		_	Wind	Angle: 0 *	19			1
				Serverige Com	Toron Ser Take				Face: Re	ear 👻	J		1
		Width: 0.7 m		Final Opening Fr	raction: 1				5.0000 A				
													A]C
		Ope	ven	Save	Geometry	y [Run		View	1		_	
Contraction of the local division of the loc													

CFAST Room 051 heat detection:

Num	Compartment	Type	X Position	Y Position	Z Position	Activation	RTI	Spray Density +
1	050/211	Smoke	3	5	3	73.89001	100	7E-05
2	231strairs	Smoke	2	2	3	73.89001	100	7E-05
3	050/211 051A	Heat	4	5	3	73.89001	100	7E-05 7E-05
	00000					descent in	100	
n 4 (of 4) — voe: Heat	Add			Move Up	Move Down	- J Activa	Remove	ture: [73.89001 'C
n 4 (of 4) ype: Heat		Compar		Move Up		- Active		ture: [73.89001 'C
	t Alarm	Compar		Move Up				ture: [73.89001 'C
	t Alarm 💌 Position Width	Compar		Move Up	2		tion Tempera 00 (ms)^0.5	ture: [73.89001 °C

CFAST Room 051 target:

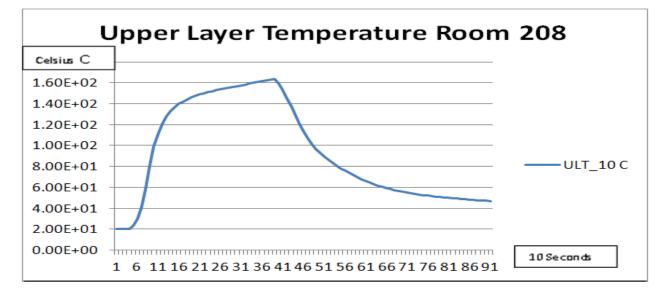
	Num	Compartment 051A	X Position	Y Position	Z Position	X Normal	Y Normal	Z Normal	and the second se	Method	Type	
		301/4	4			0			PLYWOOD	Implicit	TRICK	
Target 1 (of		try ent: 051A	D	uplicate	Move U		Move Down ermally Thick]		Nove	lict	-
Contraction of the second	Compartme	try Int. 051A				Type: Th	emally Thick	-			lot	-
Contraction of the second	Compartme 					Type: Th	emally Thick		Solution N			×
Contraction of the second	Compartme Target C Material	enstruction				Type: Th	ermaily Thick		Solution N	fethod: [imp		
Contraction of the second	Target C Material Conducti Specific	try ent: 051A onstruction Phywood (1/2 in) wity: 0.00012 kW/(m * Heat: 1.215 kJ/(kg *C				Type: Th	ermally Thick sometry Target Posit		Solution N	Nethod: Imp rmal Vector pecified	Points to	
Contraction of the second	Target C Material Conducti Specific I Density:	try ent: 051A onstruction Phywood (1/2 in) wity: 0.00012 kW//m *				Type: Th	sometry Target Posit); 2 m		Solution N No	Method: [Imp rmal Vector pecified (X): [0	Points to	



CFAST Room 051 connections:

1	Type Horizontal	First 051A	Second 208	Fraction 0.2	-	Num	Туре	Тор	Bottom	-
2	Horizontal	051A	207	0.4						
3	Horizontal	051A 051A	231strairs 050/211	0.2						
5	Horizontal	207	016	0.2						
_										
_					*					
_		Fraction: 0.2								
		Ope	m Save]	Ge	ry Run		View		

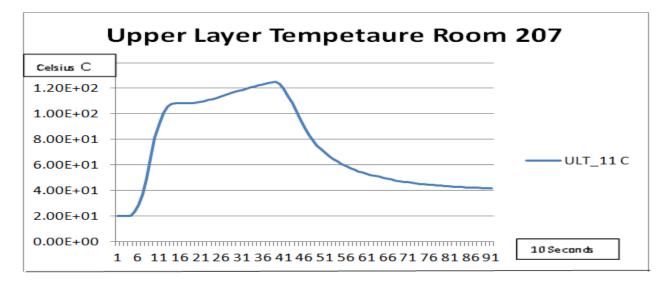
CFAST output:


Upper Temperature Distribution in room 051 A Temperature °C vs. Time 10 sec

There will be no flashover as the maximum temperature was 257 C and the flashover temperature is (Between 500 - 600 C). No wood will ignite as well (Ignition for wood at 350° C).

CFAST output:

Upper Temperature Distribution in room 208 Temperature °C vs. Time 10 sec



There will be no flashover as the maximum temperature was 161 C and the flashover temperature is (Between 500 - 600 C). No wood will ignite as well (Ignition for wood at 350° C).

CFAST output:

Upper Temperature Distribution in room 207 Temperature °C vs. Time 10 sec

There will be no flashover as the maximum temperature was 123 C and the flashover temperature is (Between 500 - 600 C). No wood will ignite as well (Ignition for wood at 350° C).

CFAST output:

 Watt
 051A Fire Size

 1.20E+06
 .00E+06

 1.00E+06
 .00E+05

 6.00E+05
 .New Fire 051A Fire Size

 2.00E+05
 .00E+00

 1
 7

 13
 19

 25
 31

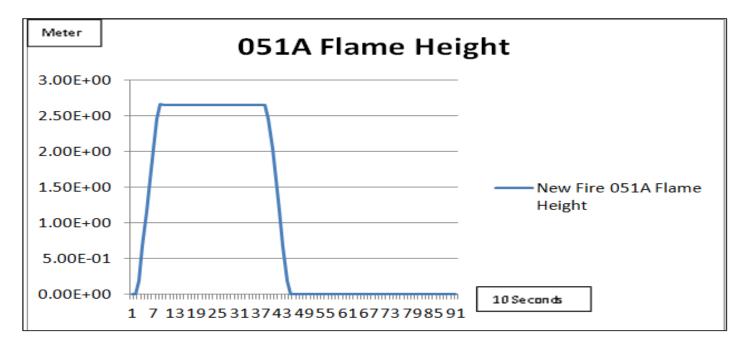
 37
 43

 49
 55

 6167
 73

 10
 Seconds

Heat Release Rate Distribution in room 051 Watt vs. Time 10 sec

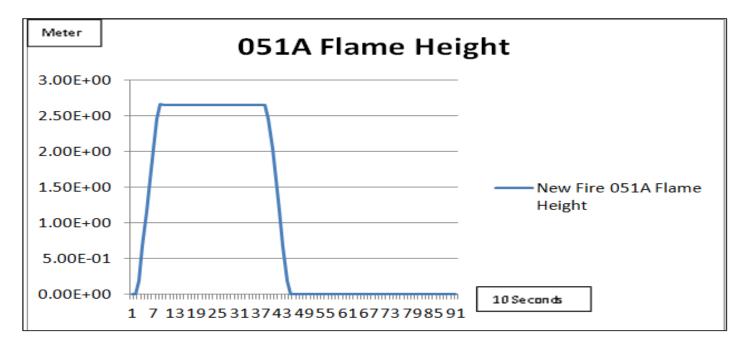

The maximum HRR is 1054kW.

Canadian Nuclear | Laboratoires Nucléaires

CFAST output:

Flame Distribution in room 051

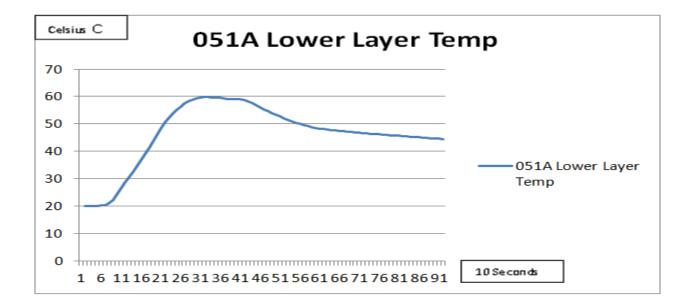
Watt vs. Time 10 sec

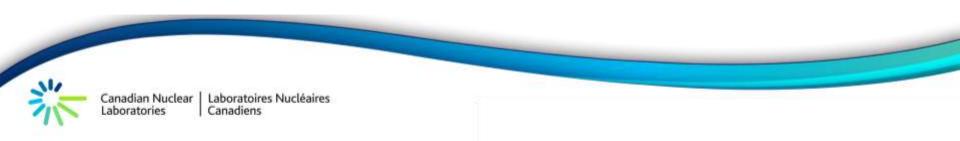


The maximum flame height is 2.6 m.

CFAST output:

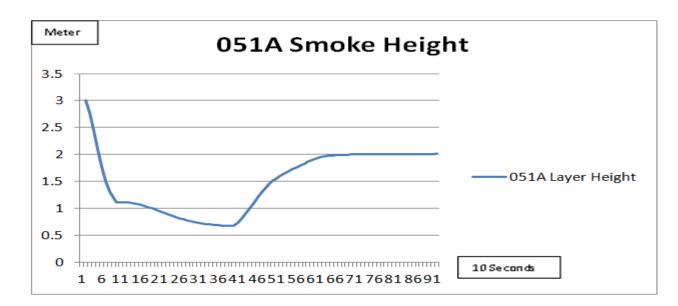
Flame Distribution in room 051


Watt vs. Time 10 sec


The maximum flame height is 2.6 m.

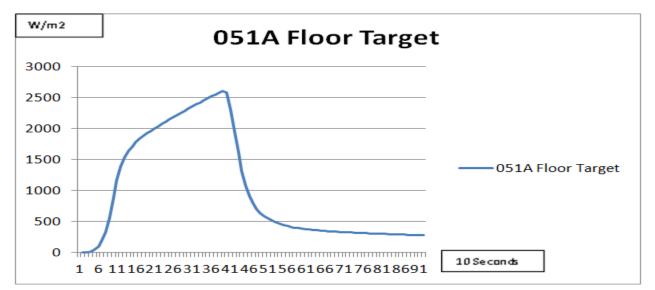
CFAST output:

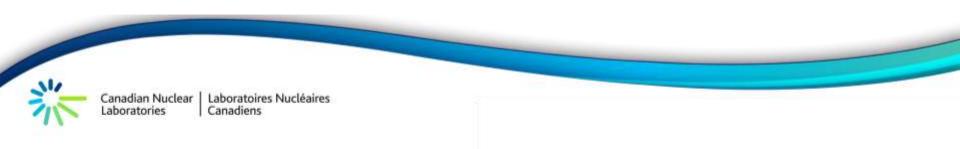
Lower Temperature Distribution in room 051 A Temperature °C vs. Time 10 sec



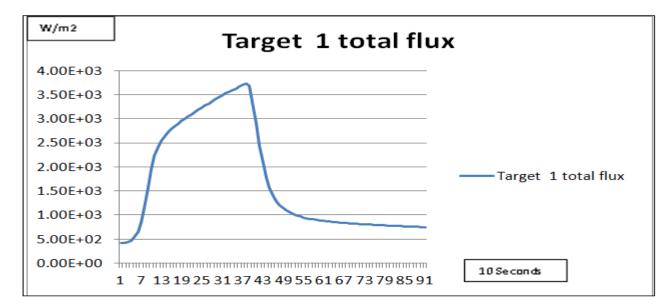
There is no human skin threat as the maximum temperature didn't exceed 120 C.

CFAST output:


Smoke Height Distribution in room 051 A Meters vs. Time 10 sec

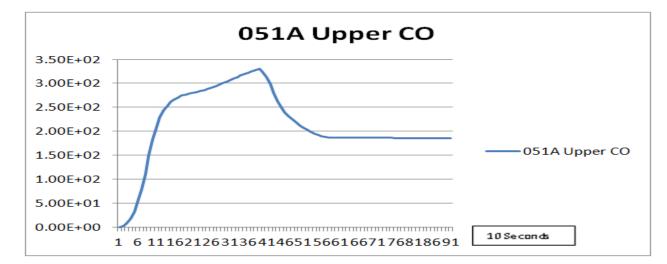

The smoke height will be steady at 2 m after the first 600 seconds of fire.

CFAST output:


Floor Radiant Heat in room 051 Watt vs. Time 10 sec

There will be human skin threat as the maximum radiant heat flux was 2.6 KW/m2 as it exceeds the limit of 2.5 KW/m2.

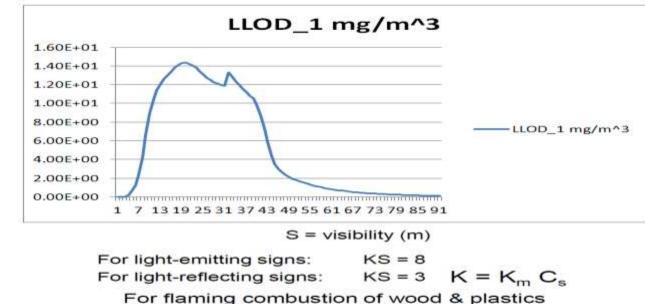
CFAST output:



Target Total Heat Flux in room 051 A

Maximum radiant heat flux at the target 2 meter away from the fire is 3.75 kW/m2.

CFAST output:


Carbon Monoxide Distribution in room 051 A vs. Time 10 sec

$$FED(t) = \frac{\int_{0}^{t} V_{CO}(t') dt'}{35,000 \text{ ppm} \cdot \min}$$

The maximum CO concentration is 203 ppm at 190 seconds (3.16 minutes) (highest CO ppm) Therefore FED = $(203 \times 3.16)/35,000 = 0.018 < 1.$

At the end of the 900 seconds = 190 ppm x 900 seconds (15 minutes) (Longest time) Therefore FED = (190 x 15) / 35,000 = 0.08 < 1.

CFAST output:

Optical Density Distribution in room 051 A vs. Time 10 sec

 $K_m \sim 7.6 \text{ m}^2/\text{g}$

Maximum $C_8 = 14.2 \text{ mg/m}^3 = 1.42 \text{ g/m}^2$, Therefore $K = 1.42 \text{ g/m}^2 \times 7.6 \text{ m}^2/\text{g} = 10.79$ Therefore in this case light-emitting sign = 8, S = 8/10.79 = 0.74 m

Hand Calculations:

<u>Radiant heat:</u>

 $\dot{Q}_{rad} = Q_{total} \times 0.3 = 1054 \text{ kW} \times 0.3 = 316 \text{ kW}$ (Compared to 330 kW from CFAST)

Target Calculation:

Employ the simple model: The flame is characterised as a point source at mid-height along the centre line of the vertical axis of the flame

$$\dot{\mathbf{q}}'' = \dot{\mathbf{Q}}_{rad} \frac{\cos \theta}{4\pi r^2}$$

 \mathbf{q}'' is radiant heat flux
 \mathbf{Q}_{total} is total heat release
 $\dot{\mathbf{Q}}_{rad}$ is radiant heat
Where $\theta = 45$ and $\cos \theta = 0.717$
 $\mathbf{r} = \text{distance (meters)}$

 $q'' = 316 \text{ kW x} (0.717 / 4x \pi \text{ x}(2\text{m})^2) = 4.5 \text{ kW/m2.}$ (Compared to 3.75 kW/m2 from CFAST)

Hand Calculations:

Flame height (Correlation - Heskestad 1983)

 $L = 0.235 Q^{2/5} - 1.02 D$ = 0.235 (1054)^{2/5}-1.02 (D)

```
Area = 1 \text{ m x } 1 \text{ m} = \pi (D/2)^2
```

D = 1.27 m

 $L = 0.235 (1054)^{2/5} - 1.02 (1.27 m)$

= 2.53 m. (Compared to 2.6 m from CFAST)

Hand Calculations:

<u>Maximum Temperature:</u>

 $\dot{q}'' = \varepsilon \sigma \varphi(T_E^4)$

 $T_E{}^4 = \dot{q}'' / \varepsilon \sigma \varphi$

 $\epsilon\,is$ the emissivity ~ 0.9

 σ is the Stephen-Boltzman constant (5.67 x 10⁻⁸ W/m²K⁴)

T_E is the temperature from the exposing source (K), and

 \dot{q} "net = net heat transfer

 $\phi = Configuration \, factor \sim 0.5$

 $T_E^4 = 3,750 \text{ W m}^{-2} / (0.818 \text{ x} 5.67 \text{ x} 10^{-8} \text{ W/m}^2 \text{ K}^4 \text{ x} 0.3)$

 $T_E = 638 \text{ K} \sim 365 \text{ °C.}$ (Compared to 257 C from CFAST)

Agenda:

Introduction **Types of Models** Applicability Case Study 1 Case Study 2 Case Study 3 **CFAST vs. Hand Calculations** CFAST vs. Hand Calculations vs. NUREG 1805 **CFAST Exercise**

➢Assume a pool fire that contains 1000 litres of lube oil. Calculate the HRR?

Hand Calculations:

Assume one drum of Lube oil leaked: Therefore,

 $\mathbf{m}^{*} = \mathbf{m}^{*}_{\infty} \left(1 - e^{-k\beta D} \right)$ $\mathbf{m}^{*} = \text{rate of mass loss / area (g m^{-2} s^{-1})}$ D = pool diameter (m) $\mathbf{m}^{*}_{\infty} = \lim_{D \to \infty} \mathbf{m}^{*}$ $\mathbf{k} = \text{flame extinction coefficient (m^{-1})}$ $\beta = \text{mean beam length corrector}$

 $\dot{\mathbf{Q}} = \mathbf{H}_{ch} \mathbf{A}_{F} \dot{\mathbf{m}}^{"}$

 \dot{Q} = rate of heat release (kW)

 H_{ch} = actual heat of combustion (kJ g⁻¹)

 $A_{F} = surface area of fuel (m²)$

Calculate radiative flux at target as

 \dot{q} = \dot{Q}_{RAD} cos θ / (4 π r²)

$$\dot{\mathbf{Q}} = \dot{\mathbf{m}}''_{\infty} \left(1 - e^{-k\beta D}\right) \mathbf{H}_{ch} \frac{\pi}{4} \mathbf{D}^{2}$$

For Lube oil:

Mass Burning rate = $0.039 \text{ kg/m}^2\text{s}$ Heat of combustion = 46,000 kj/kgEmpirical Constant = 0.7 m^{-1}

$$\dot{\mathbf{Q}} = \mathbf{H}_{ch} \mathbf{A}_{F} \dot{\mathbf{m}}^{"}$$

 \dot{Q} = rate of heat release (kW)

 H_{ch} = actual heat of combustion (kJ g⁻¹)

 $A_{F} = surface area of fuel (m²)$

Calculate radiative flux at target as

$$q^{"} = Q_{RAD} \cos \theta / (4 \pi r^2)$$

$$\dot{\mathbf{Q}} = \dot{\mathbf{m}}''_{\infty} \left(1 - e^{-k\beta D} \right) \mathbf{H}_{ch} \frac{\pi}{4} \mathbf{D}^{2}$$

For Lube oil:

Mass Burning rate = $0.039 \text{ kg/m}^2\text{s}$ Heat of combustion = 46,000 kj/kgEmpirical Constant = 0.7 m^{-1}

For Lube oil:

Mass Burning rate = $0.039 \text{ kg/m}^2\text{s}$ Heat of combustion = 46,000 kj/kgEmpirical Constant = 0.7 m^{-1}

The drum of Lube oil contains 1000 Litres = 1 m^3 If spilled with height 1 m

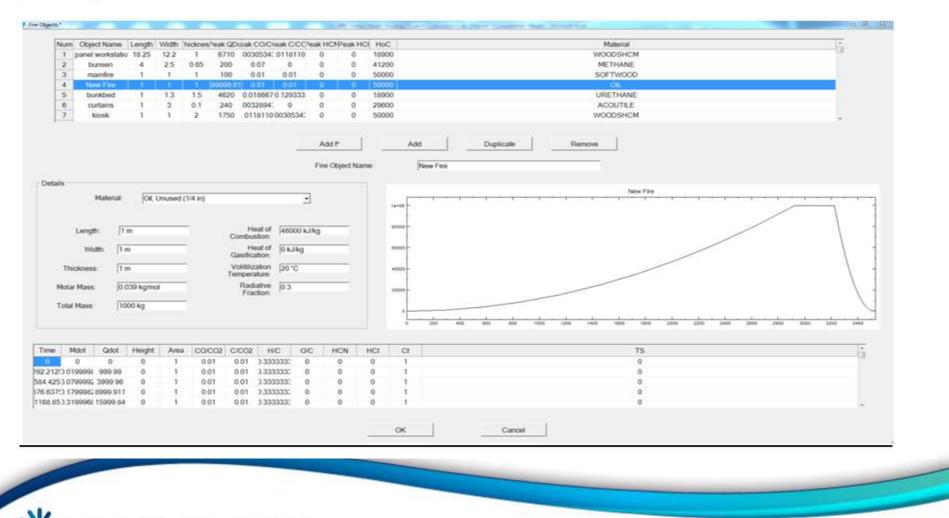
 $Area = 1.0 m^3 / 1 m = 1 m^2$

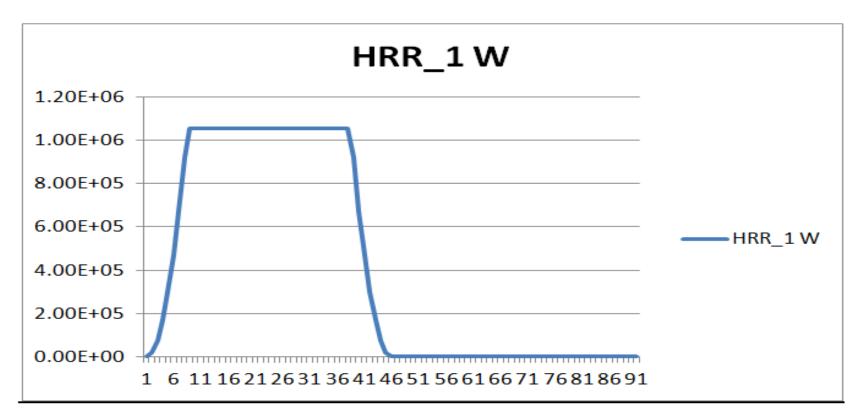
Area = $\pi r^2 = 1 m^2$

Therefore r = 0.55 mAnd Diameter D = 1.1 m

Therefore Q = 0.039 kg m⁻² s⁻¹ x (1 – e^{-0.7 x 1.1}) x 46,000 kj/kg x $\pi/4$ x (1.1)² Q = 1003.8 kW

NUREG 1805:


e following calculations estimate the heat release rate, burning duration, and fl	lame height for liquid pool fire.	ShucleAR REGULATOR
arameters in YELLOW CELLS are Entered by the User.		STATES
arameters in GREEN CELLS are Automatically Selected from t		lect P A Same U S
Il subsequent output values are calculated by the spreadsheet and based on val	lues specified in the input	S 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
arameters. This spreadsheet is protected and secure to avoid errors due to a v he chapter in the NUREG should be read before an analysis is made.	wrong entry in a ceil(a).	
ne casper a de recence sicolo de reas percre an analysis is induc.		S GALINO NOISE
and the second state of th		* that # *
NPUT PARAMETERS		
Fuel Spill Volume (V)	275.00 gallery	6.000 ±1
Fuel Spill Area or Dike Area (Azaz)	11.00 62	5.822 ···
Mass Burning Rate of Fuel (m'')	0.033 kg/m ² trac	
Effective Heat of Combustion of Fuel (AH., rsf)	46000 kJ/kg	
Fuel Density (p)	760 kg/m ³	
Empirical Constant (k3)	0.7 m ⁻¹	
Ambient Air Temperature (T.,)	77.00 1	25.00 ~<
		211.01 K
Gravitational Acceleration (g)	3.81	
Ambient Air Density (c.,)	1.18 kalm ³	


		R LIQUID HYDROCARBON FU			
Fuel	Mass Burning Rate	Heat of Combustion	Density	Empirical Constan k\$ (m ⁻¹)	Select Fuel Type
	m" (kg/m ⁴ -sec)	ΔH _{eeff} (kJ/kg)	p (kg/m²)	and the second s	
ethanol	0.017	20,000	796	100	Scroll to desired fuel type
hanol	0.015	26,800	794	100	Click on selection
utane	0.078	45,700	573	2.7	
chache	0.085	40,100	874	2.7	
xane	0.074	44,700	650	1.3	
ptane	0.101	44,600	675	1.1	
viene	0.09	40,800	870	1.4	
cetone	0.041	25,800	791	1.3	
oxane	0.018	26,200	1035	5.4	
ethy Ether	0.085	34,200	714	0.7	
enzine	0.048	44,700	740	3.6	
asoline	0.055	43,700	740	2.1	
rosine	0.033	43,200	820	3.5	
esel	0.045	44,400	318	2.1	
-4	0.051	43,500	760	3.6	
45	0.054	43,000	810	1.6	
ansformer Oil, Hydrocarbon	0.039	46,000	760	0.7	
1 Silicon Transformer Fluid	0.005	28,100	960	100	
el Oil, Heavy	0.035	39,700	970	1.7	
rude Oil	0.0335	42,600	855	2.8	
be Oil	0.039	46,000	760	0.7	
ser Specified Value	Enter Valge	Enter Value	Enter Value	Enter Value	
errors Stat Hooksak at time Protection	or Logianning , Y Edillar, 2002, Prografi				
STIMATING POOL F					
STIMATING POOL F		RATE			
STIMATING POOL F	IRE HEAT RELEASE	RATE			
STIMATING POOL F	IRE HEAT RELEASE	RATE ,1' Colline, 2002, Prop. 5-55			
STIMATING POOL F	(1 - e ^{rke} ⁰) Area Q = pool fire host release re	TRATE			
STIMATING POOL F ه	(1 - e ^{rke} ⁰) Area Q = pool fire host release re	RATE ,1' Colline, 2002, Prop. 5-55			
STIMATING POOL F ه	(1 - e ^{rke} ⁰) Area Q = pool fire host release re	ate (kW) fuel per unit surface area (kg/m ² -sec)			
STIMATING POOL F ه	(1 - e ^{-ke-b}) A ₄₁₄ , Q = pool fire heat release ro m ^{**} = mass burning rate of f ΔH _{4,444} = effective heat of co	ate (kW) fuel per unit surface area (kg/m ² -sec) ombustion of fuel (kJ/kg)) (m ²)		
STIMATING POOL F ه	(1 - e ^{-to-D}) A ₄₁₆ , Q = pool fire heat release ro m ^o = mass burning rate of f ΔH _{0,000} = effective heat of co A ₄ = A ₂₁₆ , = surface area of	ate (kW) fuel per unit surface area (kg/m ² -sec) ombustion of fuel (kJ/kg) pool fire (area involved in vaporization) (m²)		Image: second
STIMATING POOL F ه	IRE HEAT RELEASE $(1 - e^{A_0 B}) A_{404}$, $Q = pool fire heat release ro m" = mass burning rate of f \Delta H_{a_1,44} = effective heat of co A_4 = A_{404}, = surface area ofkS = empirical constant (m)$	TRATE "Control of fuel (kJ/kg) pool fire (area involved in vaporization 1)			Normal (Normal (Norma (Normal (Norma (Normal (Normal (Normat (Normal (Normal (Normat (N
STIMATING POOL F ه	IRE HEAT RELEASE $(1 - e^{A_0 B}) A_{404}$, $Q = pool fire heat release ro m" = mass burning rate of f \Delta H_{a_1,44} = effective heat of co A_4 = A_{404}, = surface area ofkS = empirical constant (m)$	ate (kW) fuel per unit surface area (kg/m ² -sec) ombustion of fuel (kJ/kg) pool fire (area involved in vaporization			Normal (1) Normal
STIMATING POOL F Reference: ۱۹۹۵ Q = m''کالم	IRE HEAT RELEASE $(1 - e^{ik_0 D}) A_{dis}$, $Q = pool fire heat release ro m'' = mass burning rate of f \Delta H_{a,rdd} = effective heat of co A_d = A_{dis}, surface area ofkS = empirical constant (m')D = diameter of pool fire (co)$	TRATE "Control of fuel (kJ/kg) pool fire (area involved in vaporization 1)			Image: second
STIMATING POOL F	IRE HEAT RELEASE $(1 - e^{A_0 B}) A_{454}$, $Q = pool fire heat release ro m" = mass burning rate of f \Delta H_{a,44} = effective heat of ec A_4 = A_{454}, = surface area ofk\beta = empirical constant (m'D = diameter of pool fire (cDiameter Calculation$	TRATE "Control of fuel (kJ/kg) pool fire (area involved in vaporization 1)			Image: section of the section of t
STIMATING POOL F References 2022 Q = m**2H _{**} ss Where Pool Fire I Aga, =	IRE HEAT RELEASE $(1 - e^{A_0 P}) A_{414}$, Q = pool fire heat release release release release by the set of each of the set	RATE "Colline, 2007, 2007, 2007 fuel per unit surface area (kg/m ² -sec) ombustion of fuel (kJ/kg) pool fire (area involved in vaporization 1) diameter involved in vaporization, circul			Product Product <thproduct< th=""> <thproduct< th=""> <thproduct< th=""></thproduct<></thproduct<></thproduct<>
STIMATING POOL F	IRE HEAT RELEASE $(1 - e^{A_0 D}) A_{dis}$. $Q = pool fire heat release re- m" = mass burning rate of f \Delta H_{a,ede} = effective heat of ec A_d = A_{dis} = surface area of k8 = empirical constant (m' D = diameter of pool fire (s Diameter Calculation zD^2/4A_{dis} = surface area of pool$	RATE "Colline, 2007, 2007, 2007 fuel per unit surface area (kg/m ² -sec) ombustion of fuel (kJ/kg) pool fire (area involved in vaporization 1) diameter involved in vaporization, circul			Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system <t< td=""></t<>
STIMATING POOL F References 2022 Q = m**2H _{**} ss Where Pool Fire I Aga, =	IRE HEAT RELEASE $(1 - e^{A_0 P}) A_{414}$, Q = pool fire heat release release release release by the set of each of the set	RATE "Colline, 2007, 2007, 2007 fuel per unit surface area (kg/m ² -sec) ombustion of fuel (kJ/kg) pool fire (area involved in vaporization 1) diameter involved in vaporization, circul			Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector Normal sector <t< td=""></t<>
STIMATING POOL F References 2022 Q = m**2H _{**} ss Where Pool Fire I Aga, =	IRE HEAT RELEASE $(1 - e^{ik_0 D}) A_{dit}$, $Q = pool fire heat release ro m'' = mass burning rate of f \Delta H_{a_0,ee} = effective heat of ce A_{ee} = A_{dit}, surface area ofkB = empirical constant (m')D = diameter Calculation = D^2/4A_{dit}, = surface area of poolD = pool fire diamter (m)$	RATE "Colline, 2007, 2007, 2007 fuel per unit surface area (kg/m ² -sec) ombustion of fuel (kJ/kg) pool fire (area involved in vaporization 1) diameter involved in vaporization, circul			Normal state N
STIMATING POOL F Reference: 2000 Q = m''AH Where Pool Fire E Asta. = Where D = \{4Astak	IRE HEAT RELEASE $\{1 - e^{ib \cdot D}\}$ A _{dit} , $Q = pool fire heat release ro m'' = mass burning rate of f \Delta H_{a,ss} = effective heat of ce A_s = A_{sit} = surface area of kB = empirical constant (m' D) = diameter of pool fire (c) Diameter Calculation zD^2/4A_{dit} = surface area of pool D = pool fire diamter (m))$	RATE "Colline, 2007, 2007, 2007 fuel per unit surface area (kg/m ² -sec) ombustion of fuel (kJ/kg) pool fire (area involved in vaporization 1) diameter involved in vaporization, circul			Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system <t< td=""></t<>
STIMATING POOL F R = m"AHss Where Pool Fire I Azit. = Where	IRE HEAT RELEASE $(1 - e^{ik_0 D}) A_{dit}$, $Q = pool fire heat release ro m'' = mass burning rate of f \Delta H_{a_0,ee} = effective heat of ce A_{ee} = A_{dit}, surface area ofkB = empirical constant (m')D = diameter Calculation = D^2/4A_{dit}, = surface area of poolD = pool fire diamter (m)$	RATE "Colline, 2007, 2007, 2007 fuel per unit surface area (kg/m ² -sec) ombustion of fuel (kJ/kg) pool fire (area involved in vaporization 1) diameter involved in vaporization, circul			Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system <t< td=""></t<>
STIMATING POOL F Reference: 2000 Q = m ² AH ₄₀ as Where Pool Fire I Azite = Where D = $\sqrt[3]{4A_{224}}$	IRE HEAT RELEASE $(1 - e^{Ac D}) A_{dit}$. $Q = pool fire heat release re- m" = mass burning rate of f \Delta H_{a,ede} = effective heat of ec A_{de} = A_{dit} = surface area of kS = empirical constant (m' D = diameter constant (m' D = diameter constant (m' D = pool fire diameter (m) 1.141 m$	ate (k/w) fuel per unit surface area (kg/m ² -sec) ombustion of fuel (kJ/kg) pool fire (area involved in vaporization ¹ diameter involved in vaporization, circul l fire (m ²)	ar pool is assumed) (m)		Normal state N
STIMATING POOL F Pool Fire E Azis, = Where D = \(4Azis, h) D = Heat Relea	IRE HEAT RELEASE $(1 - e^{A_0 D}) A_{dis}$, $Q = pool fire heat release ro m'' = mass burning rate of f \Delta H_{a,ss} = effective heat of ce A_{se} = A_{sis} = surface area of kB = empirical constant (m') Diameter Calculation zD^2/4A_{dis} = surface area of pool D = pool fire diamter (m) 1.141 m se Rate Calculation$	ate (KW) fuel per unit surface area (kg/m ² -sec) ombustion of fuel (kJ/kg) pool fire (area involved in vaporization ') diameter involved in vaporization, circul l fire (m ²)	ar pool is assumed) (m)		Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system Normal system <t< td=""></t<>
STIMATING POOL F Reference: 2000 Q = m ² AH ₄₀ as Where Pool Fire I Azite = Where D = $\sqrt[3]{4A_{224}}$	IRE HEAT RELEASE $(1 - e^{A_0 D}) A_{dis}$, $Q = pool fire heat release ro m'' = mass burning rate of f \Delta H_{a,ss} = effective heat of ce A_{se} = A_{sis} = surface area of kB = empirical constant (m') Diameter Calculation zD^2/4A_{dis} = surface area of pool D = pool fire diamter (m) 1.141 m se Rate Calculation$	ate (k/w) fuel per unit surface area (kg/m ² -sec) ombustion of fuel (kJ/kg) pool fire (area involved in vaporization ¹ diameter involved in vaporization, circul l fire (m ²)	ar pool is assumed) (m)		Image: state

CFAST:

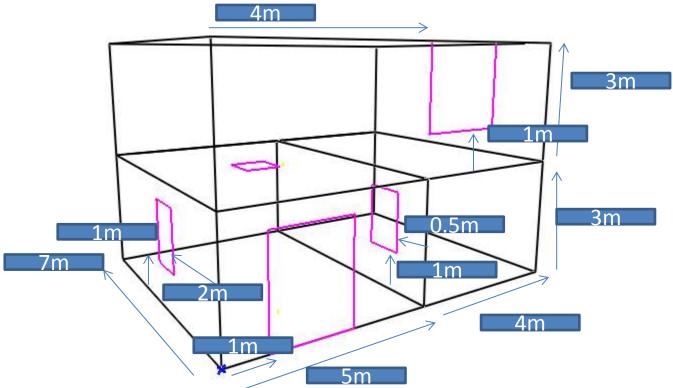
<u>Output:</u>

Q = 1050 kW

Agenda:

Introduction **Types of Models** Applicability Case Study 1 Case Study 2 Case Study 3 **CFAST vs. Hand Calculations** CFAST vs. Hand Calculations vs. NUREG 1805 **CFAST Exercise**

CFAST Exercise 1


Room 4m x 3m x 3m with one door in the front at distance 1m. The door is 0.7m X 2m. The fire is 3 panel work station in the middle of the room. All walls and celing are 5/8 gypsum board and floor is light concrete.

Using CFAST (Simulation time: 6 minutes), Calculate:

≻HRR?

- ≻Maximum Heat flux?
- ≻Flame height?
- ➤Highest temperature?
- Life safety? (CO & Optical distance)

CFAST Exercise 2

CFAST Exercise 2

All walls and ceiling are 5/8 gypsum board and floor is light concrete. In room 1, the door dimension is 2m width x 2.5m height. The windows dimension in the room 1 are 1m width x 1.5m height. In room 3, the window dimension is 2m width x 2m height. In room 1, there is a round opening to room 3 with area of 0.8m2.

Fire 1 in room 1 of a box spring and mattress in the middle of the room. Fire 2 in room 2 of bunkbed in the middle of the room.

Fire 2 in room 2 of bunkbed in the middle of the room.

Fire 3 in room 3 of a kiosk in the middle of the room.

Using CFAST, Calculate:

HRR in room 3?
Maximum floor Heat flux in room 2?
Human heat flux in room 3?
Smoke height in room 1?

>Highest temperature in room 1?

References

- [1] Different engineering correlations are proposed in the literature
 - SFPE Handbook of Fire Protection Engineering
 - NFPA-The Fire Protection Handbook
 - Karlsson and Quintiere, "Enclosure Fire Dynamics," CRC Press, 2000.
 - Drysdale, "An Introduction to Fire Dynamics," John Wiley and Sons, 1999
 - Cox, "Combustion Fundamentals of Fire," Academic Press, 1995
- [2] ISO/DTS 13571, "Life threat from fires guidance on the estimation of the time available for escape using fire data"
- [3] National Research Council of Canada (2010). *National Building Code of Canada 2010*. Canadian Commission on Building and Fire Codes: Ottawa, On.
- [4] D. Drysdale, An Introduction to Fire Dynamics, Wiley, 1999, Chap 1
- [5] National Fire Protection Association, NFPA 801, Standard for Facilities CarryingRadioactive Material, 2003 Edition
- [6] C.L. Tien, K.Y. Lee and A.J. Stretton, "Radiation Heat Transfer" Section 1 / Chapter 4, SFPE Handbook, 2nd Ed. (1995)
- [7] ISO/DTS 13571, "Life threat from fires guidance on the estimation of the time available for escape using fire data".
- [8] http://www.msc.ec.gc.ca/windchill
- [9] Timber Design Manual
- [10] J.P. Holman, Heat Transfer
- [11] J.G. Quintiere, "Surface Flame Spread"SFPE Handbook, 2nd Ed. (1995)
- [12] V. Babrauskas, "The Cone Calorimeter"SFPE Handbook, 2nd Ed. (1995)
- [13] E. Mikkola, "Ignitability of Solid Materials", in Heat Release in Fires, Elsevier Applied Science, 1992.
- [14] A. Tewardson, "Generation of Heat and Chemical Compounds in Fires" Section 3 / Chapter 4, SFPE Handbook, 2nd Ed. (1995)
- [15] T.Z. Harmathy, A New Look at Compartment Fires, Parts I and II
- [16] B***-****-FHA-001 Rev. 1; Building *** Fire Hazard Analysis
- [17] National Building Code of Canada, 2010 Edition
- [18] National Fire Code of Canada, 2010 Edition
- [19] B*** ---- Memo B***-***-***-0001.
- [20] National Fire Protection Association (NFPA) 801, *Fire Protection for Facilities Handling Radioactive Materials*, 2008 Edition
- [21] A. Tewardson, "Generation of Heat and Chemical Compounds in Fires" Section 3 / Chapter 4, SFPE Handbook, 2nd Ed. (1995)